Priority conservation areas and a global population estimate for the critically endangered Philippine Eagle

L. J. Sutton ${ }^{1}$ (D) J. C. Ibañez ${ }^{2,3}$, D. I. Salvador ${ }^{2}$, R. L. Taraya ${ }^{2}$, G. S. Opiso ${ }^{2}$, T. L. P. Senarillos ${ }^{2}$ \& C. J. W. McClure ${ }^{1}$ (i)

1 The Peregrine Fund, Boise, ID, USA
2 Philippine Eagle Foundation, Philippine Eagle Center, Davao City, Philippines
3 University of the Philippines - Mindanao, Davao City, Philippines

Keywords

area of habitat; conservation planning; gap analysis; population size; range metrics; species distribution models; protected area coverage; IUCN Red List.

Correspondence

Luke J. Sutton, The Peregrine Fund, 5668
West Flying Hawk Lane, Boise, Idaho 83709 USA.
Email: Isutton@peregrinefund.org

Editor: Philipp Boersch-Supan
Associate Editor: Philipp Boersch-Supan

Received 29 November 2021; accepted 13 January 2023
doi:10.1111/acv. 12854

Abstract

Many range-restricted taxa are experiencing population declines, yet we lack fundamental information regarding their distribution and population size. Establishing baseline estimates for both of these key biological parameters is however critical for directing conservation planning for at-risk range-restricted species. The International Union for the Conservation of Nature (IUCN) Red List uses three range metrics that define species distributions and inform extinction risk assessments: extent of occurrence (EOO), area of occupancy (AOO) and area of habitat (AOH). However, calculating all three metrics using standard IUCN approaches relies on a geographically representative sample of locations, which for rare species is often spatially biased. Here, we apply model-based interpolation using Species Distribution Models (SDMs), correlating occurrences with remote-sensing covariates, to calculate IUCN range metrics, protected area coverage and a global population estimate for the Critically Endangered Philippine Eagle (Pithecophaga jefferyi). Our final range wide continuous SDM had high predictive accuracy (continuous Boyce Index $=0.934$) and when converted to a binary model estimated an AOH as $28624 \mathrm{~km}^{2}$, a maximum EOO as $617957 \mathrm{~km}^{2}$, and a minimum EOO as $275459 \mathrm{~km}^{2}$, with an AOO as $53867 \mathrm{~km}^{2}$. Based on inferred habitat from the AOH metric, we estimate a global population of 392 breeding pairs (range: 318447 pairs), or 784 mature individuals, across the Philippine Eagle global range. Protected areas covered 32% of $\mathrm{AOH}, 13 \%$ less than the target representation, with the continuous model identifying key habitat as priority conservation areas. We demonstrate that even when occurrences are geographically biased, robust habitat models can quantify baseline IUCN range metrics, protected area coverage and a population size estimate. In the absence of adequate location data for many rare and threatened taxa, our method is a promising spatial modelling tool with widespread applications, particularly for island endemics facing high extinction risk.

IUCN developed a new deductive range metric, area of habitat (AOH, Brooks et al., 2019), defined as the extent of habitat factors, such as landcover and elevation, for a species within its range. Estimating AOH is important because it can be used in supporting conservation risk assessments by quantifying habitat loss and protected area coverage (Brooks et al., 2019; Sutton et al., 2022).

Protected areas are a fundamental tool for conservation (Rodrigues \& Cazalis, 2020) and have been successful in reducing habitat loss and fragmentation for many taxa (Brooks, Wright, \& Sheil, 2009; Geldmann et al., 2013), including apex predators, such as the Asiatic lion (Panthera leo persica; Venkataraman, 2009). However, despite wide coverage in the global protected area network, gaps in protected area coverage still exist with new areas being continually added (Rodrigues et al., 2004a, 2004b). Additionally, not all protected areas are located in places deemed effective for conservation, but often designated by socio-economic factors related to competing human activities (Pringle, 2017; Morán-Ordóñez, 2020). Key Biodiversity Areas (KBAs; BirdLife International, 2020) are key sites of international significance for biodiversity which contain: (1) populations of globally threatened species, (2) populations and communities of range or biome restricted species or (3) substantial congregations of bird species. KBAs also protect areas important for biodiversity and aim to overlap with the entire global protected area network (Donald et al., 2019). Identifying key sites within the existing KBA network as new protected areas is usually accomplished using a gap analysis (Scott et al., 1993). This analysis simultaneously calculates protected area coverage within predicted AOH , thus defining priority sites for protection or conservation action.

Various spatial workflows have been proposed and implemented for calculating AOH , which overlay and clip elevational and landcover preferences within the range of species presence points (Brooks et al., 2019). Deductive methods using clipped environmental layers with expert-drawn maps (Harris \& Pimm, 2008), or inductive modelling methods using inverse distance weighted interpolation (Palacio et al., 2021), and logistic regression (Dahal et al., 2021; Lumbierres et al., 2021), have been successful in estimating AOH. However, these techniques rely on a spatially homogenous sample of presence points. For many rare species in remote areas that are difficult to survey, presence data are either insufficient, or may be heavily biased towards a wellsampled region but lacking elsewhere (Syfert et al., 2014; Dahal et al., 2021). Because of the rarity of these species, occurrence data are limited and thus calculating range metrics based solely on point data is likely to result in unreliable estimates (Pena et al., 2014). To overcome this issue of sampling bias in calculating AOH a new approach for measuring AOH is required for those rare species with high extinction risk that inhabit remote regions lacking adequate presence data.

The Philippine Eagle (Pithecophaga jefferyi) is a large tropical forest raptor and one of the most threatened raptors globally, currently classified as 'Critically Endangered' on the IUCN Red List (BirdLife International, 2018). The

Philippine Eagle is endemic to four islands in the Philippine archipelago (Mindanao, Leyte, Samar and Luzon; Figure S1), and is sparsely distributed across lowland and montane dipterocarp forests (Salvador \& Ibanez, 2006). The population has declined drastically over the past 50 years, mainly due to habitat loss through deforestation (Kennedy, 1977; Bueser et al., 2003; Panopio et al., 2021) and persecution (Salvador \& Ibanez, 2006; Ibañez et al., 2016). Thus, the Philippine Eagle fulfils all three components of rarity, and along with its large body size, slow breeding cycle (one young every $2-$ 3 years), and forest dependency would be associated with a higher risk of extinction (Kittelberger et al., 2021). Despite this elevated extinction risk, fundamental aspects of the species' biology such as distribution and population size are still uncertain (Collar, 1997; Collar, Mallari, \& Tabaranza, 1999; BirdLife International, 2018) and need updating using a robust methodology.

Most Philippine Eagle research has been conducted on the island of Mindanao (Miranda et al., 2000; Bueser et al., 2003), and thus occurrence data are biased towards this island. Bueser et al. (2003) estimated between 82 and 233 breeding pairs for Mindanao, and extrapolating this figure across all range islands suggests a global total of between 340 (BirdLife International, 2018) and 500 pairs (Salvador \& Ibanez, 2006). However, pair densities on the other range islands, especially Luzon, are unknown and thus this population size figure should be treated with caution (Miranda, Salvador, \& Bueser, 2008). Because of these research disparities, there are no current range-wide estimates for the species' global range extent and population size, despite it being a raptor of high priority for research and conservation (Buechley et al., 2019). Indeed, the IUCN Red List suggests that further research into distribution, population size and ecological requirements is urgently required to inform conservation actions (BirdLife International, 2018).

Here, we use Species Distribution Models (SDMs) calibrated with remote sensing covariates and presencebackground data for the Philippine Eagle on the island of Mindanao, and then predict into the other less-well sampled islands using inductive model-based interpolation (Rodríguez et al., 2007; Franklin, 2009). SDMs are predictive spatial models that infer species-habitat associations by correlating species presence points with habitat covariates that represent the focal species optimal conditions and resources (Guisan, Thuiller, \& Zimmermann, 2017; Matthiopoulos, Fieberg, \& Aarts, 2020). Indeed, SDMs can inform IUCN species range metrics and predict habitat in areas that may lack occurrence data for inclusion in Red List assessments (Marcer et al., 2013; Pena et al., 2014; Syfert et al., 2014; Breiner et al., 2017). Using interpolated model predictions, range metrics such as AOH, EOO and AOO can then be calculated based on inferred or predicted habitat following IUCN Red List guidelines (IUCN, 2019). First, we present an updated approach to estimating species range metrics and population size based on predicted habitat for the Philippine Eagle, and second, we demonstrate how our methodology can be incorporated into protected area conservation planning for rare species facing extinction.

Materials and methods

Species locations

We compiled Philippine Eagle point localities from the Global Raptor Impact Network (GRIN, McClure et al., 2021), a data information system for population monitoring of all raptor species. For the Philippine Eagle, GRIN includes presence-only data consisting of nest locations $(n=48)$ from unstructured surveys (i.e. with no true absence data) conducted on Mindanao by the Philippine Eagle Foundation since 1978 to the present (Miranda et al., 2000; Ibañez et al., 2016), along with community science data from the Global Biodiversity Information Facility $(n=27$; GBIF, 2021). We discarded eBird (Sullivan et al., 2009) occurrences from the GBIF dataset because we deemed the locations were too unrepresentative for this particular analysis.

Duplicate locations and those with no geo-referenced coordinates were removed and then combined into a single database. Only locations recorded from year 1980 onwards were included to match the temporal timeframe of the habitat covariates, while retaining sufficient sample size for robust modelling (van Proosdij et al., 2016). A total of 75 georeferenced records were compiled across the Philippine Eagle range after data cleaning all of which are from Mindanao. Additionally, we included GPS tracking data from six nesting adult Philippine Eagles from the island of Mindanao sourced from the Philippine Eagle Foundation and pooled this with the nest and community science data to better represent habitat use of a rare species with limited occurrences (Fletcher Jr et al., 2019; see Appendix S1).

For the Mindanao model, we used the nest and community science localities from the island of Mindanao, combined with the filtered GPS tracking fixes. We then manually applied a spatial filter between each point, resulting in a single occurrence in each $1-\mathrm{km}$ raster grid cell, resulting in a filtered subset of 373 occurrence records for the Mindanao calibration models. We used spatial filtering because it is the most-effective method to account for sampling bias (KramerSchadt et al., 2013; Boria et al., 2014; Fourcade et al., 2014) and to ensure we retained the nest locations and GPS fixes as priority data points because of their geolocation accuracy and direct relevance to optimal conditions and resources for Philippine Eagle occurrence. To evaluate the final continuous range-wide model, we used all nest and community science localities recorded from 1980 onwards and applied a $1-\mathrm{km}$ spatial filter between each location, regardless of the origin of the point locality.

Habitat covariates

We defined the species' accessible area (Barve et al., 2011) as consisting of the mainland area of all known range islands: Mindanao, Leyte, Samar and Luzon (BirdLife International, 2018; Figure S1). We extracted the polygons from the World Wildlife Fund (WWF) terrestrial ecoregions shapefile (Olson et al., 2001), which correspond to either lowland
or montane moist tropical forest. We masked the tropical pine forest ecoregion in the north of Luzon because Philippine eagles are habitat specialists of tropical moist dipterocarp forests (Kennedy, 1977; Bueser et al., 2003; Salvador \& Ibanez, 2006), and thus unlikely to occur in this ecoregion. Raster covariate layers were cropped to a delimited polygon consisting of the mainland area of all the known range islands. We selected covariates a prioiri based both on environmental factors related empirically to resources and conditions influencing Philippine Eagle distribution (Bueser et al., 2003; Ibañez et al., 2003; Salvador \& Ibanez, 2006).

We predicted occurrence using six continuous covariates at a spatial resolution of 30 arc-seconds ($\sim 1-\mathrm{km}$; Figure S2) derived from multiple satellite remote sensing products. These consisted of three surface reflectance bands, which represent proxies of vegetation biomass, sourced from the Moderate Resolution Imaging Spectroradiometer (MODIS, https://modis.gsfc.nasa.gov/): Band 1 Red (i.e. plant biomass); Band 2 Near Infrared (i.e. leaf and canopy biomass); B7 Short Wave Infrared (i.e. senescent biomass), combined with Evergreen Forest landcover downloaded from the EarthEnv repository (https://www.earthenv.org) and a Leaf Area Index biophysical measure downloaded from the Dynamic Habitat Indices repository (https://silvis.forest.wisc.edu/data/ dhis/). Additionally, we included Human Footprint Index as a measure of human land use sourced from the Socioeconomic Data and Applications Center (SEDAC; https://sedac. ciesin.columbia.edu). Full details on covariates and processing are provided in the Appendix S1.

Species distribution models

All Philippine Eagle occurrences and nest locations deposited in GRIN are from the island of Mindanao, with no occurrences across the Eastern Visayas and Luzon. Due to this geographical sampling bias, which would likely bias any model predictions (Syfert et al., 2014), we developed a model workflow (Figure S3) to first predict habitat suitability for Mindanao (Figure S3, box 3a). Next, we projected each Mindanao model into the islands of the Eastern Visayas and Luzon (Figure S3, boxes 3b,c), before finally merging each island model into a single range-wide prediction (Figure S3, box 3c). We parametrised the SDMs using a fine pixel grid ($\sim 1-\mathrm{km}$), equivalent to fitting an inhomogeneous Poisson process (IPP) with loglinear intensity (Baddeley et al., 2010). We did this because the IPP framework is the most-effective method to model presence-only data (Warton \& Shepherd, 2010), common to many raptor monitoring programmes which solely seek to identify occupied areas (Geary, Haworth, \& Fielding, 2018).

We fitted SDMs using penalised logistic regression, via maximum penalised likelihood estimation (Hefley \& Hooten, 2015) in the R package maxnet (Phillips et al., 2017). Penalised logistic regression imposes a regularisation penalty on the model coefficients, shrinking towards zero the coefficients of covariates that contribute the least to the model, reducing model complexity (Gastón \& García-Viñas, 2011). We limited model complexity because this is necessary when
the primary goal is to use SDMs for predictive transferability in space (Helmstetter et al., 2021). The maxnet package fits the SDM as a form of infinitely weighted logistic regression (presence weights $=1$, background weights $=100$), based on the maximum entropy algorithm, MAXENT (Phillips et al., 2017). MAXENT is designed for presence-background SDMs and is mathematically equivalent to estimating the parameters for an IPP (Renner \& Warton, 2013; Renner et al., 2015). We used a tuned penalised logistic regression algorithm because this approach outperforms other SDM algorithms (Valavi et al., 2021), including ensemble averaged methods (Hao et al., 2020). Full details on the model parameter settings are outlined in the Appendix S1.

We evaluated calibration accuracy for the Mindanao model using a random sample of 3730 background points at a recommended 1:10 ratio to the presence data (Helmstetter et al., 2021). For the range-wide model, we used a random sample of 10000 background points as pseudo-absences recommended to sufficiently sample the background calibration environment (Barbet-Massin et al., 2012; Guevara et al., 2018). We used Continuous Boyce index (CBI; Hirzel et al., 2006) as a threshold-independent metric of how predictions differ from a random distribution of observed presences (Boyce et al., 2002). CBI is consistent with a Spearman correlation $\left(r_{s}\right)$ and ranges from -1 to +1 . Positive values indicate predictions consistent with observed presences, values close to zero suggest no difference with a random model, and negative values indicate areas with frequent presences having low environmental suitability. We calculated mean CBI using five-fold cross-validation on 20% test data with a moving window for threshold independence and 101 defined bins in the R package enmSdm (Smith, 2019).

For the Mindanao model, we further tested the optimal predictions against random expectations using partial Receiver Operating Characteristic ratios (pROC), which estimate model performance by giving precedence to omission errors over commission errors (Peterson, Papeş, \& Soberón, 2008). Partial ROC ratios range from 0 to 2 with 1 indicating a random model. Function parameters were set with a 10% omission error rate, and 1000 bootstrap replicates on 50% test data to determine significant $(\alpha=0.05)$ pROC values >1.0 in the R package ENMGadgets (Barve \& Barve, 2013). Lastly, the final range-wide continuous prediction was tested using CBI and then converted into a binary threshold prediction based on expert validation from J.C.I., which we term model AOH (Figure S3, box 5), to be distinct from the standard IUCN AOH methodology (Brooks et al., 2019).

We validated our models in conjunction with expert judgement because this approach gives most benefit to conservation risk assessments (Marcer et al., 2013; Syfert et al., 2014). Following modelling protocols established by Velásquez-Tibatá et al. (2019), we assessed a range of four binary thresholds for biological realism (median, 75% upper quantile, maximising the sum of sensitivity and specificity (maxTSS) and Cohen's Kappa), using expert critical feedback to assess the predictive ability of our models (Figure S3, boxes $4 \mathrm{~b}, \mathrm{c}$). Both maxTSS and upper quantile binary models
were evaluated as plausible range extents but we chose maxTSS because this threshold is recommended for spatial conservation applications (Liu, White, \& Newell, 2013). We followed a participatory modelling process methodology to ensure a robust expert validation of our models, concurring with current knowledge of species biology and its application to conservation planning (Ferraz et al., 2020).

Range sizes

To calculate model AOH in suitable pixels, we reclassified the continuous prediction to a binary threshold prediction (Figure S3, boxes 4a,b), using all pixel values equal to or greater than the maxTSS threshold from the continuous model. We calculated two further IUCN range metrics from our model AOH binary prediction. First, Area of Occupancy (AOO) was calculated as the number of raster pixels predicted to be occupied, scaled to a $2 \times 2 \mathrm{~km}$ grid $\left(4-\mathrm{km}^{2}\right.$ cells) following IUCN guidelines (IUCN, 2018) in the R package redlistr (Lee et al., 2019). Second, we converted the model AOH raster to a polygon using an 8 -neighbour patch rule and applied a smoothing function using the Chaikin algorithm (Chaikin, 1974) in the R package smoothr (Strimas-Mackey, 2021). From this, we calculated Extent of Occurrence (EOO), fitting a minimum convex polygon (MCP) around the furthest boundaries of the smoothed model AOH polygon following IUCN guidelines (IUCN, 2018). We calculated both a maximum EOO, including all the area with the MCP, and a minimum EOO, masking the areas that could never be occupied within the MCP, in our case over the ocean (Marcer et al., 2013). All range metric calculations were performed using a Transverse cylindrical equal area projection following IUCN guidelines (IUCN, 2018).

Population size estimation

We calculated the number of Philippine Eagle pairs our model AOH could support as directly proportional to the available habitat within a given home range required by a breeding pair of Philippine Eagles (Kennedy, 1977; Krupa, 1989). Based on the premise that central-place foragers, such as the Philippine Eagle, require a semi-fixed area of habitat to survive and reproduce, we calculated the habitat area required for each pair on home range estimates from six breeding adult Philippine Eagles fitted with satellite telemetry tags (Table S1). We calculated home range sizes using three different estimators to provide a range of habitat area estimates for calculating population size because of variation in outputs between different home range estimation methods (Signer \& Fieberg, 2021; see Appendix S1).

Using the habitat area from the three estimates, we then calculated the median, and a range of minimum to maximum population sizes of potential breeding pairs that our model AOH prediction could support using the formulation of Kennedy (1977),

$$
\widehat{T}(N / n) t
$$

where $T_{\text {hat }}=$ total population size; $N=$ area of habitat; $n=$ home range estimate and $t=$ sample total multiplied by 2. We used the IUCN Red List definitions for population size as the total number of mature individuals across the species range (IUCN, 2019), then divided that figure by 2 to give the number of potential breeding pairs.

Protected area gap analysis

We assessed the level of protected area coverage within the Key Biodiversity Area (KBA) network using the World Database of Protected Area (WDPA) terrestrial shapefile for the Philippines (as of June 2021; UNEP-WCMC \& IUCN, 2021). We quantified how much protected area representation is needed for the Philippine Eagle dependent on the model AOH to calculate a protected area 'representation target' following the formulation of Rodrigues et al. (2004a),

$$
\text { Target }=\max (0.1, \min (1,-0.375 \times \log 10(\text { range size })+2.126))
$$

where 'Target' is equal to the percentage of protected target representation required for the species 'range size', as used in subsequent applications of the formula (Butchart et al., 2015; Di Marco et al., 2017). We calculated the difference between the current level of KBA coverage compared to the target level representation for terrestrial WDPA coverage using the model AOH intersected with the KBA polygons (as of September 2020; BirdLife International, 2020), establishing those KBAs covering areas of habitat suitability \geq maxTSS threshold. The KBA network polygons were then overlaid with the continuous maps for each island identifying gaps in habitat suitability \geq maxTSS threshold which were not covered by the terrestrial WDPA polygons. We used the continuous models to identify priority conservation areas because continuous predictions give more precision for identifying spatial conservation planning hotspots than binary outcomes (Guillera-Arroita et al., 2015). We used the R program (v3.5.1; R Core Team, 2018) for model development and geospatial analysis using the raster (Hijmans, 2017), rgdal (Bivand, Keitt, \& Rowlingson, 2019), rgeos (Bivand \& Rundel, 2019) and sp (Bivand, Pebesma, \& GomezRubio, 2013) packages.

Results

Species distribution models

For the Mindanao models, only one candidate model had an $\Delta \mathrm{AIC}_{\mathrm{c}} \leq 2$. The best-fit SDM for the island of Mindanao $\left(\Delta \mathrm{AIC}_{\mathrm{c}}=0.0\right)$ had a beta coefficient penalty of $\beta=1$ with linear and quadratic terms as model parameters, with highcalibration accuracy (mean $\mathrm{CBI}=0.934$), and was robust against random expectations ($\mathrm{pROC}=1.534, \mathrm{SD} \pm 0.079$, range: $1.248-1.771$). The optimal model shrinkage penalty was able to retain 10 non-zero beta coefficients, only setting to zero the quadratic terms for Band 1 Red and Evergreen Forest (Table 1), meaning most covariate terms were highly informative to model prediction (Figures S4-S6).

Table 1 Parameter estimates from the penalised linear and quadratic beta coefficients derived from the response functions for each habitat covariate from the optimal Species Distribution Model for the Philippine Eagle on Mindanao island

Covariate	Linear	Quadratic
B1 Red	5.636	0.000
B2 Near Infrared	-6.500	-7.455
B7 Short Wave Infrared	4.018	11.213
Evergreen Forest	0.052	0.000
Human Footprint Index	0.157	-0.003
Leaf Area Index	1.027	-0.362

From the penalised beta coefficients (Table 1), Philippine Eagles on Mindanao were most positively associated with Band 1 Red surface reflectance values >0.4 (i.e. dense, healthy green plant biomass), followed by lower Band 7 Short Wave Infrared surface reflectance values between 0.2 and 0.4 (i.e. senescent or old-growth biomass) and most negatively associated with Band 2 Near Infrared surface reflectance values >0.3 (i.e. leaf and canopy biomass; Fig. 1). Philippine Eagles had a unimodal response to Leaf Area Index values of 1.5 (i.e. multiple layered canopy cover), and a positive linear response to Evergreen Forest cover between $70-80 \%$ (Fig. 1). Philippine Eagles had a positive relationship up to Human Footprint Index values of 20 (i.e. areas of low human impact) decreasing sharply to areas with highimpact human infrastructure.

On Mindanao, the largest continuous areas of Philippine Eagle habitat were confined to mountainous regions with high forest cover across the eastern and central mountain ranges of Kitanglad, Pantaron, Diwata and the Bukidnon plateau (Fig. 2). Patchy areas of habitat were identified throughout western Mindanao, largely confined to areas of steep, forested terrain, and extending further south into the Tiruray Highlands and Mount Latian complex. Little habitat was predicted across the now largely deforested lowland plains. The range-wide continuous model had high predictive performance $(\mathrm{CBI}=0.955)$ and was able to capture key areas of habitat when projected to the islands of Luzon and the Eastern Visayas (Fig. 3). For the Eastern Visayas, highest habitat suitability was predicted in a small area of north-eastern Samar. Only small patches of high-suitability habitat were predicted for Leyte. In Luzon, the largest continuous area of Philippine Eagle habitat was predicted in the northern Sierra Madres mountain range in the east of the island, with smaller patches further south. Further high-suitability areas were predicted in the north of Luzon in the northern Cordillera mountain range and a smaller area of habitat was predicted for the Zambales mountain range in the far west of Luzon (Fig. 3).

Range metrics and population size

The reclassified binary model (maxTSS threshold $=0.560$) calculated a model $\mathrm{AOH}=28624 \mathrm{~km}^{2}$ (Fig. 4). From the model AOH, maximum EOO was $617957 \mathrm{~km}^{2}$ and minimum EOO $275 \quad 459 \mathrm{~km}^{2}$ (Fig. 4), with an

Figure 1 Penalised logistic regression response functions for each habitat covariate from the optimal Species Distribution Model for the Philippine Eagle on Mindanao island. The curves show the contribution to model prediction (y-axis) as a function of each continuous habitat covariate (x-axis). Maximum values in each response curve define the highest predicted relative suitability. The response curves reflect the partial dependence on predicted suitability for each covariate and the dependencies produced by interactions between the selected covariate and all other covariates. Absolute reflectance values on the x-axes of the top row panels are expressed as the ratio of reflected over incoming radiation, meaning reflectance can be measured between the values of zero and one. Reflectance values of $3-4$ indicate healthy vegetation.
$\mathrm{AOO}=53867 \mathrm{~km}^{2}$. The median territorial habitat area based on the home range estimates from the six adults was $73 \mathrm{~km}^{2}$ using the KDE estimator (Table 2; Figure S7), with a minimum and maximum range of 64 and $90 \mathrm{~km}^{2}$ of territorial habitat area using the median home range estimates from the $\mathrm{r}-\mathrm{LoCoH}$ and $99 \% \mathrm{MCP}$ estimators, respectively (Table 2; Figure S8). Using our formulation based on habitat area from home range estimates, we calculated the model AOH could potentially support 392 breeding pairs (range: 318-447), or 784 mature individuals, across the entire Philippine Eagle range based on the model AOH area of $28624 \mathrm{~km}^{2}$ (Fig. 4). The area of habitat in Mindanao (17 $040 \mathrm{~km}^{2}$) could potentially support 233 breeding pairs (range: 190-266; Figure S9), in Luzon $\left(\mathrm{AOH}=9348 \mathrm{~km}^{2}\right.$) 128 pairs (range: 104-146; Figure S10) and in the Eastern Visayas $\left(\mathrm{AOH}=2236 \mathrm{~km}^{2}\right) 31$ pairs (range: $25-35$; Figure S11).

Priority conservation areas

Across the Philippine Eagle range, the current WDPA network covered 32.4% ($9274 \mathrm{~km}^{2}$) of the model AOH (Figure S12), 12.6% less than the target protected area representation of 45%. The KBA network covered 67% (19 $180 \mathrm{~km}^{2}$) of the model AOH (Figure S13), double the
coverage within the WDPA network. We identified priority areas of Philippine Eagle habitat that are currently classified as KBAs but without protected area coverage in the WDPA network on all range islands.

On Mindanao, priority KBAs for upgrading to protected areas include (Fig. 5): (1) Mount Hilong-hilong and (2) Mount Kampalili-Putting Bato in the Eastern Mindanao Biodiversity Corridor. In southern-central Mindanao, priorities are extending the protected area for Mount Apo Natural Park (3) into the northern part of the KBA, along with protected status for the Mount Latian complex and Mount BusaKiamba KBAs (4). Protected areas could also be extended in the Mount Piagayungan and Butig Mountains and Munai/ Tambo KBAs (5) in east-central Mindanao. In northerncentral Mindanao, priority KBAs for protection include the Mount Kaluayan - Mount Kinabalian Complex along with the adjacent Mount Balatukan, and the Mount Tago Range KBAs (6). Additionally, we recommend new KBAs and/or protected areas be established in: (A) Sibuco-Sirawai region of western Mindanao (Fig. 5; dashed blue circle A); (B) the Daguma Range-Palimbang region of southern Mindanao (dashed blue circle B) and (C) Mount Sinaka in central Mindanao (dashed blue circle C).

In the Eastern Visayas, most habitat within the KBA network on Samar was contained within the Samar Island

Figure 2 Continuous species distribution model for the Philippine Eagle on the island of Mindanao using a penalised logistic regression model algorithm. Map denotes habitat suitability prediction with red areas (values closer to 1) having highest habitat suitability, orange/yellow moderate suitability and blue/green low suitability (values closer to zero).

Natural Park (IUCN Cat. II; Fig. 6). The north-east of the island had highest habitat suitability and should be prioritised for further protection extending across north-east Samar beyond the national park. This would include high-suitability habitat which has no coverage within either the KBA or protected area networks. The priority KBA for protection in Leyte was Anonang-Lobi Range, which contains the largest areas of habitat (Fig. 6). Furthermore, the pockets of highsuitability habitat within the Mount Nacolod KBA in the east of Leyte must be prioritised for habitat protection and as potential reintroduction sites (Fig. 6). For Luzon, priority KBAs for proposed new protected areas include (Fig. 7): (1) the Apayao Lowland Forest in northern Luzon, along with extending this KBA and the Balbalasang-Balbalan KBA west to cover further high-suitability habitat. Connecting highsuitability habitat along the Sierra Madre Range by protecting the North Central Sierra Madre Mountains KBA (2) and Mount Dingalan and Aurora Memorial National Park KBAs (3) in eastern Luzon. Lastly, (4) the Zambales Mountains could also be upgraded for protection if surveys identify a population here, otherwise the KBA should be prioritised for potential reintroductions.

Discussion

Range-restricted tropical raptors are particularly threatened by human-induced land use activities (Cruz, Santulli-Sanzo, \& Ceballos, 2021), with many experiencing severe population declines and in need of immediate research and conservation (McClure et al., 2018; Buechley et al., 2019).

Correlating occurrence data from multiple sources with remote-sensing environmental data, we provide a first estimate of Area of Habitat for the Philippine Eagle, update the species' IUCN range metrics and provide a baseline global population estimate. By establishing baselines for these important biological parameters, we then applied our model outputs for directing long-term monitoring and priority conservation planning for this Critically Endangered raptor. Despite issues of geographic sampling bias in our occurrence dataset, we were able to overcome any analytical setbacks by implementing a robust and straightforward modelling framework. We view our methodology as a widely applicable tool for quantifying species-habitat associations for many taxa of conservation concern.

Our model AOH map updates previous estimates of potential habitat for the Philippine Eagle, further refining the habitat map from Krupa (1989). Our model AOH estimate of $28624 \mathrm{~km}^{2}$ confirms the Philippine Eagle as a rangerestricted and endemic species, which are not always mutually exclusive (Gaston, 1994). We were able to use our binary model prediction to calculate a first estimate for AOO ($53867 \mathrm{~km}^{2}$) and an updated EOO bounded from the model AOH polygon (see Fig. 4). Our maximum EOO ($617957 \mathrm{~km}^{2}$) was 11% larger than the current IUCN estimate (551 $000 \mathrm{~km}^{2}$; BirdLife International, 2018). However, when considering the area of EOO not covering the unoccupiable area of the ocean, our minimum EOO ($275459 \mathrm{~km}^{2}$) was 50% less. We posit that using a minimum EOO is more relevant for species that range across island archipelagos because including areas that cannot be occupied within the

Figure 3 Range-wide species distribution model for the Philippine Eagle using a penalised logistic regression model algorithm. Map denotes continuous prediction with red areas (values closer to 1) having highest habitat suitability, orange/yellow moderate suitability and blue/green low suitability. Illustration by Bryce W. Robinson.
entire area of the MCP in the EOO range metric calculation is potentially misleading. We recognise the need to have a consistent global methodology for species range metrics but not at the cost of inflating risk spread in the EOO range metric for threatened island ranging species. Thus, we recommend that both a minimum and maximum EOO be reported in future IUCN range assessments where relevant.

Area of Habitat maps are useful in many conservation applications such as protected area assessments, targeting surveys and monitoring habitat loss (Brooks et al., 2019). Here, we also applied our model AOH to calculating a key biological parameter used in IUCN conservation risk assessments, that of a global population estimate (IUCN, 2019). However, we stress that our global estimate of 392 pairs (784 mature individuals) is the potential breeding population size based on inferred habitat from SDM outputs which may not always link to population parameters (Lee-Yaw et al., 2021). Our global population size of 392 pairs was higher than a current extrapolated estimate of 340 pairs
(BirdLife International, 2018) and from an earlier estimate of 88-221 pairs (Krupa, 1989). However, the key difference here is that we used an empirical estimate of habitat area needed for each pair based on home range estimates. Assuming our baseline population estimate is accurate, we urge more investment and research, such as ground-truthing surveys, into conserving these remaining populations and their forest habitat.

Our median population estimate for Mindanao ($n=233$ pairs) was at the upper limit of the current population range estimate for the island ($82-233$ pairs; Bueser et al., 2003), but greater than other previous population estimates (Kennedy, 1977; Krupa, 1989). Bueser et al. (2003) calculated population size using a different method based on habitat within a circular plot around known nest sites from nearest neighbour distances and total forest habitat. That our population size estimate for Mindanao was at the upper limit of the range given by Bueser et al. (2003), gives credence to our method that uses home range estimates with our area of

Figure 4 Range metrics for the Philippine Eagle showing the reclassified binary model area of habitat (AOH) area (brown) and extent of occurrence (EOO, hashed blue polygon). Grey island polygons represent the species accessible area. Yellow polygons define the national boundary of the Philippines not within the species accessible area. Values in parentheses refer to the median number of Philippine Eagle breeding pairs that the area of habitat on each island could support. Illustration by Bryce W. Robinson.

Table 2 Home range estimates for six breeding adult Philippine Eagles using three home range estimators

Adult ID	r-LoCoH	95% KDE	99% MCP
001 F	61	70	88
002F	85	75	105
003F	37	43	36
004M	66	107	91
005M	53	41	57
006F	120	147	173
Median	64	73	90

All values are km^{2}. r-LoCoH, radius local convex hull; KDE, Kernel density estimate, MCP, minimum convex polygon.
habitat size. The median population estimate for Luzon ($n=128$ pairs) was nearly half that for Mindanao but higher than from a previous estimate of $33-83$ pairs, that used assumed territory sizes of $60-100 \mathrm{~km}^{2}$ with the then area of
remaining forest habitat in the Philippines (Krupa, 1989). Exploratory ground-truthing surveys are thus required across Luzon to establish the accuracy of our baseline population estimate.
Historically, Philippine Eagles were recorded throughout Luzon (Kennedy, 1977) but with most records largely restricted to the Sierra Madre range (Poulsen, 1995; Panopio et al., 2021), albeit at assumed low densities (Krupa, 1989). Indeed, surveys in the north of Luzon discovered the first nest in the northern Cordillera range (Abaño, Salvador, \& Ibañez, 2016), and our model predicted extensive Philippine Eagle habitat across both the Sierra Madre and Cordillera ranges. Our estimate of 31 pairs (range: $25-35$ pairs) for the Eastern Visayan islands of Leyte and Samar was greater than earlier estimates (Kennedy, 1977; Krupa, 1989). Previous pair estimates for Samar ranged between 8 and 19 pairs (Krupa, 1989), with numbers on Leyte estimated to be between 8 and 10 pairs (Kennedy, 1977), or as low as 1-4

Figure 5 Gap Analysis for Philippine Eagle habitat on the island of Mindanao showing spatial coverage of the World Database on Protected Areas (WDPA) network (black polygons) compared to the Key Biodiversity Area (KBA) network coverage (white hashed polygons) within the continuous model prediction. Map denotes habitat suitability prediction with red areas (values closer to 1) having highest habitat suitability, yellow moderate suitability and blue low suitability (values closer to zero). Numbered arrows indicate priority KBAs for protection: (1) Mount Hilong-hilong, (2) Mount Kampalili-Putting Bato, (3) Mount Apo, (4) Mount Latian \& Mount Busa-Kiamba, (5) Mount Piagayungan \& Butig Mountains and Munai/Tambo, (6) Mount Kaluayan-Mount Kinabalian Complex, Mount Balatukan and Mount Tago Range. Hashed blue circles indicate areas of high-suitability habitat recommended as new KBAs and/or protected areas: (A) Sibuco-Sirawai, (B) Daguma RangePalimbang and (C) Mount Sinaka.
pairs (Krupa, 1989). Like Luzon, we urge more surveys on Leyte and Samar to ground-truth our estimates because even though this is the smallest sub-population it is still viable for maintaining genetic diversity and building on reintroduction efforts.

The Philippines is one of the most biodiverse countries globally (Myers et al., 2000), with an established community-based protected area system (Senga, 2001; Posa et al., 2008). Our gap analysis was able to identify 15 current KBAs on all range islands (both with and without any form of protection), as priority sites for new or extended protected areas within the current network. Further, we identified two priority sites for reintroductions on Leyte and one on Luzon, along with three recommended sites for new protected designations on Mindanao. Due to the Philippine Eagle's reliance on tropical dipterocarp forest, we recommend designating these KBAs as either new protected areas, Indigenous and Community Conserved Areas (ICCAs) or Local Conservation Areas (LCAs). This would connect the remaining habitat patches which are key to the species future survival (Poulsen, 1995; Posa et al., 2008). Further, protecting these key areas of tropical forest habitat should also be beneficial for prioritising reintroduction sites.

An important advantage of using covariates derived from MODIS satellite remote sensing data is that constant
monitoring can be established for changes in vegetation (Perez \& Comiso, 2014). New MODIS covariates can then be used in updated models for the important biological and conservation parameters for area of habitat, population size and protected area coverage, meaning rapid action can tackle emerging threats when needed. However, we recognise that new and emerging satellite remote sensing technologies could also be incorporated into our modelling framework and to improve predictions for SDMs in general (Leitão \& Santos, 2019). For example, active optical sensors that can capture the three-dimensional structure of vegetation (i.e. NASA Global Ecosystem Dynamics Investigation; Burns et al., 2020), or passive optical sensors with higher spatial resolution (up to 10 m) and higher revisitation frequency (i.e. Sentinel 2, Copernicus programme, European Space Agency). Modelling species distributions at a spatial resolution relevant to both organism and conservation-relevant scales might benefit from the use of these rich data sources that are rarely used in conservation biology.

There is no one overriding 'best' method for modelling species-habitat associations but multiple approaches dependent on the purpose of the study (Qiao, Soberón, \& Peterson, 2015). Our approach was useful because of its ability to predict beyond the known range limits of the Philippine Eagle, providing a potential area of habitat (sensu Sutton

Figure 6 Gap Analysis for Philippine Eagle habitat on the islands of Leyte and Samar in the Eastern Visayas showing spatial coverage of the World Database on Protected Areas (WDPA) network (black polygons) compared to the Key Biodiversity Area (KBA) network coverage (white hashed polygons) within the continuous model prediction. Map denotes habitat suitability prediction with red areas (values closer to 1) having highest habitat suitability, yellow moderate suitability and blue low suitability (values closer to zero).
et al., 2021a, 2022). This was appropriate in this context when our goal was to provide baseline estimates for global range extent and population size, with geographically biased species locations, rendering standard habitat modelling approaches unsuitable. Further, the standard IUCN approach to estimating AOH uses solely landcover and elevation as covariates (Brooks et al., 2019). Here, along with landcover we also incorporated important predictors for determining species' habitat associations such as those from raw surface reflectance values and human land use (Guisan et al., 2017). This procedure resulted in improved model predictions compared to an initial SDM for the Philippine Eagle using climate and landcover (Sutton et al., 2021b). We recommend that analysts consider remote sensing variables in future area of habitat assessments to fully capture the environmental range limits for a given taxa.

While we envision broad applications for our methodology, we recognise that our spatial workflow is likely most useful for island endemic species with low numbers of occurrences, or with pronounced geographic sampling bias in species locations. Despite potential issues with sampling bias from pooling occurrences from disparate data sources (Fletcher et al., 2019), we were able to use the spatial filter to account for sampling bias and use pooled data because we had no true absences to use in our models, only presences. We sampled pseudo-absences from our study area
but the assumption that all absences would be within that study area (thus approximating the model integral) is difficult to assess (Hefley \& Hooten, 2016). Rectifying the issues for this form of sampling bias with an appropriate data model is currently unknown (Hefley \& Hooten, 2016). Thus, pooling all the available presence data and then combining with a random sample of background pseudo-absences is justified in this case for a data-poor rare species (Biddle et al., 2021).

Despite this, we recognise the need to find a more efficient observation process when modelling species' distributions using locations from targeted surveys or opportunistically collected community science data (Kéry et al., 2010). Developing robust protocols for structured or semi-structured planned surveys that incorporate true absence observations and observer effort from ground-truthing would be a step forward. Similarly, using existing opportunistic records from community science data to infer absences in a semi-structured observation process accounting for spatial biases would likely improve model predictions (Gorleri, Hochachka, \& Areta, 2021; Johnston et al., 2021). Whether locations are opportunistic or from targeted surveys, encouraging recording in the most relevant areas to the specific goal in a biodiversity conservation project would reduce the inherent noise from irregular sampling, especially in community science occurrence data (Callaghan et al., 2019).

Figure 7 Gap analysis for Philippine Eagle habitat on the island of Luzon showing spatial coverage of the World Database on Protected Areas (WDPA) network (black polygons) compared to the key biodiversity area (KBA) network coverage (white hashed polygons) within the continuous model prediction. Map denotes habitat suitability prediction with red areas (values closer to 1) having highest habitat suitability, yellow moderate suitability and blue low suitability (values closer to zero). Numbered arrows indicate priority KBAs for protection: (1) Apayao Lowland Forest and Balbalasang-Balbalan, (2) North Central Sierra Madre Mountains, (3) Mount Dingalan and Aurora Memorial National Park and (4) Zambales Mountains.

Globally, more than half of all raptor species are declining, largely due to increasing human land use activities, driving habitat loss and degradation (McClure et al., 2018). Quantifying baseline biological parameters such as range extent and population size is key to establishing a solid foundation from which to build effective conservation action (Watson, 2018). With the fundamentals of where a given species occurs and how many individuals exist, conservation planning can be more effectively directed to areas of high conservation priority (IUCN, 2001; Rodríguez et al., 2007). Our results demonstrate that even with geographically biased occurrence datasets, SDMs can inform globally recognised range metrics and baseline population estimates. In the absence of widespread occurrence data for many rare species, our method is a promising spatial tool with widespread applications for many taxa, particularly for those island endemic species facing high extinction risk.

Acknowledgements

We thank all staff and volunteers from the Philippine Eagle Foundation who conducted fieldwork over the past four decades, including local forest guards, nest wardens and

Indigenous co-researchers. We thank all individuals and organisations who contributed data to the GRIN information system. LJS thanks The Peregrine Fund for providing a postdoctoral research grant and we thank the M.J. Murdoch Charitable Trust for funding. The PEF would like to thank local government partners across the Philippines, and the following institutions that funded and supported the field surveys and nest monitoring: Mohammed Bin Zayed Conservation Fund, Local Government of Apayao and Calanasan, Disney Conservation Fund, Whitley Fund for Nature, Microwave Telemetry Inc., KoEko, Forest Foundation Philippines, the Peregrine Fund, Direct Aid Program - AusAID, USAID/Phil-Am Fund, USAID/Protect Wildlife, Insular Life Foundation, GIZ-Coseram, Pacific Paints (Boysen) Philippines, Energy Development Corporation, UNDP Global Environment Fund, Italy Debt Swamp/Department of Finance, US Forest Service, San Roque Power Corporation, Cornell Lab of Ornithology, Raptor Resource Project, and the Department of Environment and Natural Resources through the Biodiversity Management Bureau and its regional and local offices (DENR Regions 2, 4, 8, 9, 10, 11, 12, and 13). We thank Philipp Boersch-Supan and two anonymous reviewers whose comments and suggestions greatly improved the manuscript.

Author contributions

LJS conducted the analysis and led the writing with support from all other co-authors. Philippine Eagle Foundation staff provided all occurrence data.

Conflict of interest

The authors have no conflict of interest to declare.

Data accessibility statement

The raster and shapefile data that support the findings of this study are openly available on the data repository figshare https://doi.org/10.6084/m9.figshare.21311259.v1. Due to confidentiality of nest locations for this critically endangered species, we are unable to publicly share our occurrence dataset. However, reproducible R code using simulated occurrences in our model workflow is available on a GitHub repository https://github.com/lsutton74/PHEA-SDM.

References

Abaño, T.R.C., Salvador, D.J. \& Ibañez, J.C. (2016). First nesting record of Philippine eagle Pithecophaga jefferyi from Luzon, Philippines, with notes on diet and breeding biology. Forktail 32, 86-88.
Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R. \& Turner, R. (2010). Spatial logistic regression and change-of-support in Poisson point processes. Electron. J. Statist. 4, 1151-1201.
Barbet-Massin, M., Jiguet, F., Albert, C.H. \& Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327-338.
Barve, N. \& Barve, V. (2013). ENMGadgets: tools for pre and post processing in ENM workflows. https://github.com/ narayanibarve/ENMGadgets
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. \& Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810-1819.
Biddle, R., Solis-Ponce, I., Jones, M., Marsden, S., Pilgrim, M. \& Devenish, C. (2021). The value of local community knowledge in species distribution modelling for a threatened neotropical parrot. Biodivers. Conserv. 30, 1803-1823.
BirdLife International. (2018). Pithecophaga jefferyi (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2018: e.T22696012A129595746. https:// doi.org/10.2305/IUCN.UK.2017-3.RLTS. T22696012A129595746.en
BirdLife International. (2020). World Database of Key Biodiversity Areas. Developed by the KBA Partnership: BirdLife International, International Union for the Conservation of Nature, American Bird Conservancy,

Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Global Wildlife Conservation, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, Wildlife Conservation Society and World Wildlife Fund. September 2020 version. Available at https://www. keybiodiversityareas.org/kba-data/request
Bivand, R. \& Rundel, C. (2019). rgeos: interface to Geometry Engine - Open Source ('GEOS'). R package version 0.4-3. https://CRAN.R-project.org/package=rgeos
Bivand, R., Pebesma, E. \& Gomez-Rubio, V. (2013). Applied spatial data analysis with R, 2nd edn. NY, USA: Springer.
Bivand, R., Keitt, T. \& Rowlingson, B. (2019). rgdal: bindings for the 'Geospatial' Data Abstraction Library. R package version 1.4-3. https://CRAN.R-project.org/package=rgdal
Boria, R.A., Olson, L.E., Goodman, S.M. \& Anderson, R.P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73-77.
Boyce, M.S., Vernier, P.R., Nielsen, S.E. \& Schmiegelow, F.K. (2002). Evaluating resource selection functions. Ecol. Model. 157, 281-300.
Breiner, F.T., Guisan, A., Nobis, M.P. \& Bergamini, A. (2017). Including environmental niche information to improve IUCN red list assessments. Divers. Distrib. 23, 484-495.
Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. \& Hilton-Taylor, C. (2002). Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909-923.
Brooks, T.M., Wright, S.J. \& Sheil, D. (2009). Evaluating the success of conservation actions in safeguarding tropical forest biodiversity. Conserv. Biol. 23, 1448-1457.
Brooks, T.M., Pimm, S.L., Akçakaya, H.R., Buchanan, G.M., Butchart, S.H., Foden, W., Hilton-Taylor, C., Hoffmann, M., Jenkins, C.N., Joppa, L. \& Li, B.V. (2019). Measuring terrestrial area of habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977-986.
Buechley, E.R., Santangeli, A., Girardello, M., Neate-Clegg, M.H., Oleyar, D., McClure, C.J.W. \& Şekercioğlu, Ç.H. (2019). Global raptor research and conservation priorities: tropical raptors fall prey to knowledge gaps. Divers. Distrib. 25, 856-869.
Bueser, G.L.L., Bueser, K.G., Afan, D.S., Salvador, D.I., Grier, J.W., Kennedy, R.S. \& Miranda, H.C. (2003). Distribution and nesting density of the Philippine eagle Pithecophaga jefferyi on Mindanao Island, Philippines: what do we know after 100 years? Ibis 145, 130-135.
Burns, P., Clark, M., Salas, L., Hancock, S., Leland, D., Jantz, P., Dubayah, R. \& Goetz, S.J. (2020). Incorporating canopy structure from simulated GEDI lidar into bird species distribution models. Environ. Res. Lett. 15, 095002. https:// doi.org/10.1088/1748-9326/ab80ee
Butchart, S.H., Clarke, M., Smith, R.J., Sykes, R.E., Scharlemann, J.P., Harfoot, M., Buchanan, G.M. et al.
(2015). Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329-337.
Callaghan, C.T., Poore, A.G., Major, R.E., Rowley, J.J. \& Cornwell, W.K. (2019). Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B 286, 20191487. https://doi.org/10.1098/rspb.2019.1487

Chaikin, G. (1974). An algorithm for high speed curve generation. Comput. Graph. Image Process. 3, 346-349.
Collar, N.J. (1997). Species survival versus perpetuation of myth - the case of the Philippine eagle. Oryx 31, 4-7.
Collar, N.J., Mallari, N.A.D. \& Tabaranza, B.R. (1999). Threatened birds of the Philippines. Manila, Philippines: Bookmark.
Cruz, C., Santulli-Sanzo, G. \& Ceballos, G. (2021). Global patterns of raptor distribution and protected areas optimal selection to reduce the extinction crises. Proc. Natl. Acad. Sci. USA 118, e2018203118.
Dahal, P.R., Lumbierres, M., Butchart, S.H., Donald, P.F. \& Rondinini, C. (2021). A validation standard for area of habitat maps for terrestrial birds and mammals. Geoscientific Model Development Discussions. 1-25. DOI: gmd-2021245.pdf (copernicus.org)

Di Marco, M., Watson, J.E., Possingham, H.P. \& Venter, O. (2017). Limitations and trade-offs in the use of species distribution maps for protected area planning. J. Appl. Ecol. 54, 402-411.
Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H., Chan, K.M., Garibaldi, L.A., Ichii, K., Liu, J., Subramanian, S.M., Midgley, G.F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Chowdhury, R.R., Shin, Y.-J., Visseren-Hamakers, I., Willis, K.J. \& Zayas, C.N. (2019). Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366, eaax3100. https://doi.org/10.1126/ science.aaw3100
Donald, P.F., Fishpool, L.D., Ajagbe, A., Bennun, L.A., Bunting, G., Burfield, I.J., Butchart, S.H., Capellan, S., Crosby, M.J., Dias, M.P. \& Diaz, D. (2019). Important bird and biodiversity areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. Int. 29, 177-198.
Ferraz, K.M.P.M.D.B., Morato, R.G., Bovo, A.A.A., da Costa, C.O.R., Ribeiro, Y.G.G., de Paula, R.C., Desbiez, A.L.J., Angelieri, C.S.C. \& Traylor-Holzer, K. (2020). Bridging the gap between researchers, conservation planners, and decision makers to improve species conservation decisionmaking. Conserv. Sci. Pract. 3, e330.
Fletcher, R.J., Jr., Hefley, T.J., Robertson, E.P., Zuckerberg, B., McCleery, R.A. \& Dorazio, R.M. (2019). A practical guide for combining data to model species distributions. Ecology 100, e02710.
Fourcade, Y., Engler, J.O., Rödder, D. \& Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a
performance assessment of methods for correcting sampling bias. PloS One 9, e97122. https://doi.org/10.1371/journal. pone. 0097122
Franklin, J. (2009). Mapping species distributions. UK: Cambridge University Press.
Gaston, K.J. (1994). Rarity. Population and community biology series, Vol. 13. Dordrecht: Springer.
Gaston, K.J. \& Fuller, R.A. (2009). The sizes of species' geographic ranges. J. Appl. Ecol. 46, 1-9.
Gastón, A. \& García-Viñas, J.I. (2011). Modelling species distributions with penalised logistic regressions: a comparison with maximum entropy models. Ecol. Model. 222, 2037-2041.
Geary, M., Haworth, P.F. \& Fielding, A.H. (2018). Hen harrier Circus cyaneus nest sites on the isle of Mull are associated with habitat mosaics and constrained by topography. Bird Study 65, 62-71.
Geldmann, J., Barnes, M., Coad, L., Craigie, I.D., Hockings, M. \& Burgess, N.D. (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230-238.
Global Biodiversity Information Facility. (2021). GBIF occurrence download. https://doi.org/10.15468/dl.7vpddn
Gorleri, F.C., Hochachka, W.M. \& Areta, J.I. (2021). Distribution models using semi-structured community science data outperform unstructured-data models for a datapoor species, the Plain Tyrannulet. Ornithol. Appl. 123, 117. https://doi.org/10.1093/ornithapp/duab038

Guevara, L., Gerstner, B.E., Kass, J.M. \& Anderson, R.P. (2018). Toward ecologically realistic predictions of species distributions: a cross-time example from tropical montane cloud forests. Glob. Chang. Biol. 24, 1511-1522.
Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R. \& Wintle, B.A. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276-292.
Guisan, A., Thuiller, W. \& Zimmermann, N.E. (2017). Habitat suitability and distribution models: with applications in R. Cambridge, UK: Cambridge University Press.
Hao, T., Elith, J., Lahoz-Monfort, J.J. \& Guillera-Arroita, G. (2020). Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549-558.
Harris, G. \& Pimm, S.L. (2008). Range size and extinction risk in forest birds. Conserv. Biol. 22, 163-171.
Hefley, T.J. \& Hooten, M.B. (2015). On the existence of maximum likelihood estimates for presence-only data. Methods Ecol. Evol. 6, 648-655.
Hefley, T.J. \& Hooten, M.B. (2016). Hierarchical species distribution models. Curr. Landsc. Ecol. Rep. 1, 87-97.
Helmstetter, N.A., Conway, C.J., Stevens, B.S. \& Goldberg, A.R. (2021). Balancing transferability and complexity of species distribution models for rare species conservation. Divers. Distrib. 27, 95-108.

Hijmans, R.J. (2017). Raster: geographic data analysis and modeling. R package version 2.6-7. https://CRAN.R-project. org/package=raster
Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C. \& Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142-152.
Ibañez, J.C., Miranda, H., Balaquit-Ibañez, G., Afan, D. \& Kennedy, R. (2003). Notes on the breeding behavior of a Philippine eagle pair in mount Sinaka, Central Mindanao. Wilson Bull. 115, 333-336.
Ibañez, J.C., Sumaya, A.M., Tampos, G. \& Salvador, D. (2016). Preventing Philippine eagle hunting: what are we missing? J. Threat. Taxa 8, 9505-9511.
IUCN. (2001). IUCN Red List categories and criteria: version 3.1. Gland, Switzerland \& Cambridge, UK: IUCN Species Survival Commission.
IUCN Red List Technical Working Group. (2018). Mapping standards and data quality for the IUCN Red List Categories and Criteria. Version 1.16.
IUCN Standards and Petitions Committee. (2019). Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. http://www.iucnredlist.org/documents/ RedListGuidelines.pdf
Jeliazkov, A., Gavish, Y., Marsh, C.J., Geschke, J., Brummitt, N., Rocchini, D., Haase, P., Kunin, W.E. \& Henle, K. (2022). Sampling and modelling rare species: conceptual guidelines for the neglected majority. Glob. Chang. Biol. 28, 3754-3777.
Johnston, A., Hochachka, W.M., Strimas-Mackey, M.E., Ruiz Gutierrez, V., Robinson, O.J., Miller, E.T., Auer, T., Kelling, S.T. \& Fink, D. (2021). Analytical guidelines to increase the value of community science data: an example using eBird data to estimate species distributions. Divers. Distrib. 27, 1265-1277.
Jones, C.G., Heck, W., Lewis, R.E., Mungroo, Y., Slade, G. \& Cade, T. (1995). The restoration of the Mauritius kestrel Falco punctatus population. Ibis 137, S173-S180.
Kennedy, R.S. (1977). Notes on the biology and population status of the monkey-eating eagle of The Philippines. Wilson Bull. 89, 1-20.
Kéry, M., Royle, J.A., Schmid, H., Schaub, M., Volet, B., Haefliger, G. \& Zbinden, N. (2010). Site-occupancy distribution modeling to correct population-trend estimates derived from opportunistic observations. Conserv. Biol. 24, 1388-1397.
Kittelberger, K.D., Neate-Clegg, M.H., Blount, J.D., Posa, M.R.C., McLaughlin, J. \& Şekercioğlu, Ç.H. (2021). Biological correlates of extinction risk in resident Philippine avifauna. Front. Ecol. Evol. 9, 664764.
Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M. \& Cheyne, S.M. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366-1379.

Krupa, R.E. (1989). Social and biological implications for endangered species management: the Philippine Eagle Pithecophaga jefferyi. In Raptors in the modem world: 301313. Meyburg, B.-U. \& Chancellor, R.D. (Eds). Berlin: World Working Group on Birds of Prey and Owls.
Lee, C.K., Keith, D.A., Nicholson, E. \& Murray, N.J. (2019).
Redlistr: tools for the IUCN red lists of ecosystems and threatened species in R. Ecography 42, 1050-1055.
Lee-Yaw, J.A., McCune, J.L., Pironon, S. \& Sheth, S.N. (2021). Species distribution models rarely predict the biology of real populations. Ecography 44, 1-16. https://doi. org/10.1111/ecog. 05877
Leitão, P.J. \& Santos, M.J. (2019). Improving models of species ecological niches: a remote sensing overview. Front. Ecol. Evol. 7, 9. https://doi.org/10.3389/fevo. 2019. 00009
Liu, C., White, M. \& Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778-789.
Lumbierres, M., Dahal, P.R., Di Marco, M., Butchart, S.H., Donald, P.F. \& Rondinini, C. (2021). Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conserv. Biol. 36, el3851. https://doi.org/10. 1101/2021.06.08.447053
Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. \& Pino, J. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Conserv. 166, 221-230.
Matthiopoulos, J., Fieberg, J. \& Aarts, G. (2020). SpeciesHabitat Associations: spatial data, predictive models, and ecological insights. Minnesota: University of Minnesota Libraries Publishing. Retrieved from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/ 217469
McClure, C.J.W., Westrip, J.R.S., Johnson, J.A., Schulwitz, S.E., Virani, M.Z., Davies, R., Symes, A., Wheatley, H., Thorstrom, R., Amar, A., Buij, R., Jones, V.R., Williams, N.P., Buechley, E.R. \& Butchart, S.H.M. (2018). State of the world's raptors: distributions, threats, and conservation recommendations. Biol. Conserv. 227, 390-402.
McClure, C.J.W., Anderson, D.L., Buij, R., Dunn, L., Henderson, M.T., McCabe, J., Rolek, B.W. et al. (2021). Commentary: the past, present, and future of the global raptor impact network. J. Raptor Res. 55, 605-618. https:// doi.org/10.3356/JRR-21-13
Miranda, H.C., Salvador, D.I., Ibañez, J.C. \& Balaquit-Ibañez, G.A. (2000). Summary of Philippine Eagle reproductive success, 1978-98. J. Raptor Res. 34, 37-41.
Miranda, H.C., Salvador, D.I. \& Bueser, G.L. (2008). Updates on the nesting biology and population status of the Philippine Eagle Pithecophaga jefferyi. Davao City: Philippine Eagle Foundation.
Morán-Ordóñez, A. (2020). Conservation of "new" species within and beyond protected areas. Anim. Conserv. 23, 353-354.

Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. \& Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853-858.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood, E.C., D'amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C. \& Loucks, C.J. (2001). Terrestrial ecoregions of the world: a new map of life on earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933-938.
Palacio, R.D., Negret, P.J., Velásquez-Tibatá, J. \& Jacobson, A.P. (2021). A data-driven geospatial workflow to improve mapping species distributions and assessing extinction risk under the IUCN red list. Divers. Distrib. 27, 2559-2570. https://doi.org/10.1111/ddi. 13424
Panopio, J.K., Pajaro, M., Grande, J.M., Torre, M.D., Raquino, M. \& Watts, P. (2021). Conservation letter: deforestation-The Philippine Eagle as a case study in developing local management partnerships with indigenous peoples. J. Raptor Res. 55, 460-467.
Pena, J.C.D.C., Kamino, L.H.Y., Rodrigues, M., MarianoNeto, E. \& de Siqueira, M.F. (2014). Assessing the conservation status of species with limited available data and disjunct distribution. Biol. Conserv. 170, 130-136.
Perez, G.J.P. \& Comiso, J.C. (2014). Seasonal and interannual variabilities of Philippine vegetation as seen from space. Philipp. J. Sci. 143, 147-155.
Peterson, A.T., Papeş, M. \& Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63-72.
Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. \& Blair, M.E. (2017). Opening the black box: an open-source release of Maxent. Ecography 40, 887-893.
Posa, M.R.C., Diesmos, A.C., Sodhi, N.S. \& Brooks, T.M. (2008). Hope for threatened tropical biodiversity: lessons from the Philippines. Bioscience 58, 231-240.
Poulsen, M.K. (1995). The threatened and near-threatened birds of Luzon, Philippines, and the role of the Sierra Madre mountains in their conservation. Bird Conserv. Int. 5, 79-115.
Pringle, R.M. (2017). Upgrading protected areas to conserve wild biodiversity. Nature 546, 91-99.
van Proosdij, A.S., Sosef, M.S., Wieringa, J.J. \& Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542-552.
Qiao, H., Soberón, J. \& Peterson, A.T. (2015). No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126-1136.
R Core Team. (2018). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rabinowitz, D., Cairns, S. \& Dillon, T. (1986). Seven forms of rarity and their frequency in the flora of the British Isles.

In Conservation biology. The science of scarcity and diversity: Soulé, M.E. (Ed.). Sunderland, MA, USA: Sinauer.
Renner, I.W. \& Warton, D.I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69, 274-281.
Renner, I.W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S.J., Popovic, G. \& Warton, D.I. (2015). Point process models for presence-only analysis. Methods Ecol. Evol. 6, 366-379.
Rodrigues, A.S. \& Cazalis, V. (2020). The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 1-4.
Rodrigues, A.S., Akcakaya, H.R., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Chanson, J.S., Fishpool, L.D., Da Fonseca, G.A., Gaston, K.J. \& Hoffmann, M. (2004a). Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 10921100.

Rodrigues, A.S., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Cowling, R.M., Fishpool, L.D., Da Fonseca, G.A., Gaston, K.J., Hoffmann, M. \& Long, J.S. (2004b). Effectiveness of the global protected area network in representing species diversity. Nature 428, 640-643.
Rodríguez, J.P., Brotons, L., Bustamante, J. \& Seoane, J. (2007). The application of predictive modelling of species distribution to biodiversity conservation. Divers. Distrib. 13, 243-251.
Salvador, D.J. \& Ibanez, J.C. (2006). Ecology and conservation of Philippine Eagles. Ornithol. Sci. 5, 171-176.
Scott, J.M., Davis, F., Csuti, B., Noss, R., Butterfield, B., Groves, C., Anderson, H., Caicco, S., D’Erchia, F., Edwards, T.C., Jr. \& Ulliman, J. (1993). Gap analysis: a geographic approach to protection of biological diversity. Wildl. Monogr. 123, 1-41.
Senga, R.G. (2001). Establishing protected areas in the Philippines: emerging trends, challenges and prospects. George Wright Forum 18, 56-65.
Signer, J. \& Fieberg, J.R. (2021). A fresh look at an old concept: home-range estimation in a tidy world. PeerJ. 9, el1031.
Smith, A.B. (2019). enmSdm: tools for modeling niches and distributions of species. R package v0.3.4.6. https://github. com/adamlilith/enmSdm/
Strimas-Mackey, M. (2021). Smoothr: smooth and tidy spatial features. R package version 0.2 .1 . https://CRAN.R-project. org/package=smoothr
Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D. \& Kelling, S. (2009). eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282-2292.
Sutton, L.J., Anderson, D.L., Franco, M., McClure, C.J.W., Miranda, E.B.P., Vargas, F.H., Vargas González, J.D.J. \& Puschendorf, R. (2021a). Geographic range estimates and
environmental requirements for the Harpy Eagle derived from spatial models of current and past distribution. Ecol. Evol. 11, 481-497. https://doi.org/10.1002/ece3.7068
Sutton, L.J., Ibañez, J.C., Salvador, D.I., Taraya, R.L., Opiso, G.S., Senarillos, T.P. \& McClure, C.J.W. (2021b). Updated range metrics and a global population estimate for the critically endangered Philippine Eagle using a spatial ensemble habitat model. bioRxiv. https://doi.org/10.1101/ 2021.11.29.470363

Sutton, L.J., Anderson, D.L., Franco, M., McClure, C.J.W., Miranda, E.B., Vargas, F.H., Vargas González, J.D.J. \& Puschendorf, R. (2022). Range-wide habitat use of the Harpy Eagle indicates four major tropical forest gaps in the key biodiversity area network. Ornithol. Appl. 124, duac019. https://doi.org/10.1093/ornithapp/duac019/6578683
Syfert, M.M., Joppa, L., Smith, M.J., Coomes, D.A., Bachman, S.P. \& Brummitt, N.A. (2014). Using species distribution models to inform IUCN Red List assessments. Biol. Conserv. 177, 174-184.
UNEP-WCMC \& IUCN (2021). Protected Planet: Philippines; The World Database on Protected Areas (WDPA). Downloaded June 2021. Cambridge, UK: UNEP-WCMC \& IUCN. Available at: www.protectedplanet.net
Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J.J. \& Elith, J. (2021). Predictive performance of presence-only species
distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92, e01486.
Velásquez-Tibatá, J., Olaya-Rodríguez, M.H., López-Lozano, D., Gutiérrez, C., González, I. \& Londoño-Murcia, M.C. (2019). BioModelos: a collaborative online system to map species distributions. PloS One. 14, e0214522.
Venkataraman, M. (2009). Site'ing the right reasons: critical evaluation of conservation planning for the Asiatic lion. Eur. J. Wildl. Res. 56, 209-213.

Warton, D.I. \& Shepherd, L.C. (2010). Poisson point process models solve the "pseudo-absence problem" for presenceonly data in ecology. Ann. Appl. Stat. 4, 1383-1402.
Watson, R.T. (2018). Raptor conservation in practice. In birds of prey: biology and conservation in the xxi century:
373-498. Sarasola, J.H., Grande, J.M. \& Negro, J.J. (Eds.). Davao City: Springer.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1. Supplementary material.

